Reg.No.:						3
----------	--	--	--	--	--	---

VIVEKANANDHA COLLEGE OF ENGINEERING FOR WOMEN

[autonomous institution affiliated to anna university, chennal] Elayampalayam $-637\ 205$, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 5007

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS – MAY / JUNE 2024 Fifth Semester

Computer Science and Engineering U19CS522 – THEORY OF COMPUTATION

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

		$(10 \times 2 = 20 \text{ M})$		(Iarks
Q.No.	Questions	Marks	KL	CO
1.	Construct DFA that accepts input string of 0's and 1's that end with '11'.	2	K2	CO1
2.	Construct regular expression to Finite automata. $R = (0+1)^*$.	2	K3	CO1
3.	Give regular expressions for the following L1=set of all strings of 0 and 1 ending in 00	2	K3 =	CO2
4.	L2=set of all strings of 0 and 1 beginning with 0 and ending with 1. Write down steps to prove a language is not regular using pumping lemma.	2	K2	CO2
5.	Give LMD and RMD for string 1010 with production $S \rightarrow 0S 1$.	2	K3	CO3
6.	Construct CFG L= $\{a^n b^n; n \ge 1\}$.	2	K3	CO3
7.	Show whether the given string "bbaa" is accepted by PDA for following transition functions $\delta(q_0,a,\$) = (q_0,a\$)$, $\delta(q_0,b,\$) = (q_0,b\$)$, $\delta(q_0,b,a) = (q_0,\epsilon)$, $\delta(q_0,a,b) = (q_0,\epsilon)$.	2	K3	CO4
8.	How you prove a language is not Context Free using Pumping Lemma.	2	K2	CO4
9.	Compare finite automata and Turing machine.	2	K2	CO5
10.	Point out the role of "checking off symbols" in a Turing Machine.	2	K2	CO5

PART - B

					$(5 \times 13 = 65 \text{ Marks})$		
Q.No.			Questions	Marks	KL	CO	
11.	a)	i.	Design DFA that accepts all strings which starts with '1' over the alphabet {0,1}	7	K3	CO1	
		ii.	Design a DFA to accept strings of a's and b's having even number of a's and b's.	6			
			(OR)				
1	b)	i.	Design NFA that accepts strings which contains either two	8	K3	CO1	
		ii.	consecutive 0's or two consecutive 1's. For the NFA given below; a. Check whether the string axxaxxa is accepted or not b. Give atleast two transition paths	5			

12. a) Find the Minimization of DFA for given DFA transition table.

13 K3 CO2

0	1
В	С
D	Е
E	D
G	G
G	G
D	E
G	G
	B D E G D

(OR)

b) i. Find regular expression for the following DFA.

6 K3 CO2

ii. Convert the given NFA to DFA.

13.	a)	Convert the following grammar into CNF S \rightarrow A CB, A \rightarrow C D, B \rightarrow 1B 1, C \rightarrow 0C 0, D \rightarrow 2D 2.	13	K3	CO3
		(OR)			
	b)	 i. State the two normal forms and give an example for each form. ii. Find Greibach normal form for the following grammar S→AA 1, A→SS 0. 	3 10	K3	CO3
14.	a)	i. Let L be L(PF) for some PDA PF = $(Q, \Sigma, \Gamma, \delta F, q0, Z0, F)$. Then there is a PDA PN such that L = N(PN) [From final state to empty stack]	7	K3	CO4
		ii. Construct a PDA for set of palindrome over the alphabet { a, b}L(M) = {WcWR}	6		
		(OR)			
	b)	i. Construct a PDA accepting by empty stack the languages	6	K3	CO4
		{ambmcn/m, n≥1}. ii. Find PDA for the given grammar S→0S1 00 11.	7		
15.	a)	Construct a Turing Machine to accept the language L= $\{0^n1^n/n>=1\}$ and draw the transition diagram.	13	K3	CO5
		(OR)			
	b)	Design a Turing Machine to compute $f(m+n) = m+n$, m, n >= 0 and simulate their action on the input 0100.	13	K3	CO5
		PART C	ě		
			(1 15	_ 15%	(1)
Q.N	0.	Questions	(1 x 15 Marks	– TSN KL	CO
16.	a)	Convert the following NFA with Σ to NFA and DFA	15	K3	CO2
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	b)	i. Summarize in detail about multihead and multitape TM With an	7	K3	CO5
	0)	example. ii. Does the Turing Machine finish computing of string W in a finite number of steps with the input Turing machine and string W? Justify your answer.	8		